281 research outputs found

    DNA repair in the trinucleotide repeat disorders

    Get PDF
    Background Inherited diseases caused by unstable repeated DNA sequences are rare, but together represent a substantial cause of morbidity. Trinucleotide repeat disorders are severe, usually life-shortening, neurological disorders caused by nucleotide expansions, and most have no disease-modifying treatments. Longer repeat expansions are associated with genetic anticipation (ie, earlier disease onset in successive generations), although the differences in age at onset are not entirely accounted for by repeat length. Such phenotypic variation within disorders implies the existence of additional modifying factors in pathways that can potentially be modulated to treat disease. Recent developments A genome-wide association study detected genetic modifiers of age at onset in Huntington's disease. Similar findings were seen in the spinocerebellar ataxias, indicating an association between DNA damage-response and repair pathways and the age at onset of disease. These studies also suggest that a common genetic mechanism modulates age at onset across polyglutamine diseases and could extend to other repeat expansion disorders. Genetic defects in DNA repair underlie other neurodegenerative disorders (eg, ataxia-telangiectasia), and DNA double-strand breaks are crucial to the modulation of early gene expression, which provides a mechanistic link between DNA repair and neurodegeneration. Mismatch and base-excision repair are important in the somatic expansion of repeated sequences in mouse models of trinucleotide repeat disorders, and somatic expansion of the expanded CAG tract in HTT correlates with age at onset of Huntington's disease and other trinucleotide repeat disorders. Where next? To understand the common genetic architecture of trinucleotide repeat disorders and any further genetic susceptibilities in individual disorders, genetic analysis with increased numbers of variants and sample sizes is needed, followed by sequencing approaches to define the phenotype-modifying variants. The findings must then be translated into cell biology analyses to elucidate the mechanisms through which the genetic variants operate. Genes that have roles in the DNA damage response could underpin a common DNA repeat-based mechanism and provide new therapeutic targets (and hence therapeutics) in multiple trinucleotide repeat disorders

    Huntington's Disease Clinical Trials Corner: November 2022

    Get PDF
    In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the PIVOT HD (PTC518), and SIGNAL (pepinemab) trials, and list all currently registered and ongoing clinical trials in Huntington's disease.We also introduce a 'breaking news' section highlighting recent updates about the SELECT HD, uniQure AMT-130, and VIBRANT HD clinical trials

    Huntington's Disease Clinical Trials Corner: July 2023

    Get PDF
    In this edition of the Huntington's Disease Clinical Trials Corner, we expand on the GENERATION HD2 (tominersen) and on the Asklepios Biopharmaceutical/BrainVectis trial with AB-1001. We also comment on the recent findings from the PROOF-HD trial, and list all currently registered and ongoing clinical trials in Huntington's disease

    Huntington's disease clinical trials corner: April 2022

    Get PDF
    In this edition of the Huntington's Disease Clinical Trials Corner we expand on GENERATION HD1, PRECISION-HD1 and PRECISION-HD2, SELECT-HD, and VIBRANT-HD trials, and list all currently registered and ongoing clinical trials in Huntington's disease

    Genetic modifiers of repeat expansion disorders

    Get PDF
    Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs

    Advance Care Planning in Huntington's Disease

    Get PDF
    Advance care planning (ACP) is a useful tool that benefits adult patients, care providers, and surrogate decision makers, through providing opportunities for patients to consider, express, and formalize their beliefs, preferences, and wishes pertaining to decisions regarding future medical care at a time when they retain decision-making capacity. Early and timely consideration of ACP discussions is paramount in Huntington's disease (HD) given the potential challenges in ascertaining decision-making capacity in the advanced stages of the disease. ACP helps to empower and extend patient autonomy, providing clinicians and surrogate decision makers with reassurance that management is consistent with a patient's expressed wishes. Regular follow up is vital to establish consistency of decisions and wishes. We outline the framework of the dedicated ACP clinic integrated within our HD service to highlight the importance of a patient-centred and tailored care plan that fulfils the patient's expressed goals, preferences, and values

    Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington’s Disease PSC-Derived Striatal Neurons

    Get PDF
    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). Disease progression is characterized by the loss of vulnerable neuronal populations within the striatum. A consistent phenotype across HD models is disruption of nucleocytoplasmic transport and nuclear pore complex (NPC) function. Here we demonstrate that high content imaging is a suitable method for detecting mislocalization of lamin-B1, RAN and RANGAP1 in striatal neuronal cultures thus allowing a robust, unbiased, highly powered approach to assay nuclear pore deficits. Furthermore, nuclear pore deficits extended to the selectively vulnerable DARPP32 + subpopulation neurons, but not to astrocytes. Striatal neuron cultures are further affected by changes in gene and protein expression of RAN, RANGAP1 and lamin-B1. Lowering total HTT using HTT-targeted anti-sense oligonucleotides partially restored gene expression, as well as subtly reducing mislocalization of proteins involved in nucleocytoplasmic transport. This suggests that mislocalization of RAN, RANGAP1 and lamin-B1 cannot be normalized by simply reducing expression of CAG-expanded HTT in the absence of healthy HTT protein

    Functional compensation of motor function in pre-symptomatic Huntington's disease

    Get PDF
    Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor contro

    Wild-type huntingtin regulates human macrophage function

    Get PDF
    The huntingtin (HTT) protein in its mutant form is the cause of the inherited neurodegenerative disorder, Huntington\u27s disease. Beyond its effects in the central nervous system, disease-associated mutant HTT causes aberrant phenotypes in myeloid-lineage innate immune system cells, namely monocytes and macrophages. Whether the wild-type form of the protein, however, has a role in normal human macrophage function has not been determined. Here, the effects of lowering the expression of wild-type (wt)HTT on the function of primary monocyte-derived macrophages from healthy, non-disease human subjects were examined. This demonstrated a previously undescribed role for wtHTT in maintaining normal macrophage health and function. Lowered wtHTT expression was associated, for instance, with a diminished release of induced cytokines, elevated phagocytosis and increased vulnerability to cellular stress. These may well occur by mechanisms different to that associated with the mutant form of the protein, given an absence of any effect on the intracellular signalling pathway predominantly associated with macrophage dysfunction in Huntington\u27s disease
    • …
    corecore